
Nonlinear Dynamics and Complexity

David Campbell, Boston University

Third European PhD Summer School and Workshop on

”Mathematical Modeling of Complex Systems”

July 2013

Analytic Problems

Maps

1. Consider the logistic map (fLr (x)) defined by

xn+1 = fLr (xn) ≡ rxn(1− xn) for 0 < xn < 1 ; 0 < r < 4 :

Verify that the period 2-orbit which is a fixed point of the second iterate fLr (fLr (x∗)) = x∗ satisfies the

equation :

x∗
(
x∗ − (1− 1

r
)
)(
x∗2 − (1 +

1

r
)x∗ +

(1 + 1
r )

r

)
= 0

Show that its solution for r > 3 is

x∗±(r) =
r + 1

2r
± 1

2r

√
(r + 1)(r − 3)

Draw in a bifurcation diagram the stable and unstable fixpoints x∗(r) vs. r for the parameter range

0 < r < 3 + ε.

2. We want to develop a cellular automaton (CA) approximation to the logistic map xn+1 = rxn(1− xn)

by dividing the unit interval into eight bins, each of size 1
8 . By considering the eight values of xn at the

centers of the bins to be the eight possible states (call them si) of the CA – e.g., s1 = 1
16 , s2 = 3

16 , etc.

– and by rounding off the exact result of the mapping to the nearest allowed CA state value, construct

the “rule table” – i.e., the dynamical rule that takes the CA states at one time into the states at the

next time for (a) r = 2 ; (b) r = 3.2 ; (c) r = 3.6; and (d) r = 4. How well does the (discretized state

space) CA reflect the behavior of the (continuous state space) logistic map at the same values of r ?
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What happens if we reduce the CA state space to four states by dividing the unit interval into four bins

of size 1
4 and study the same values of r ?

3. Consider the tent map, defined by xn+1 = a[1− 2(xn − 1
2 )]. Prove that there is a mapping between the

logistic map with r = 4 and the tent map for a = 1.

4. Consider the (dissipative) Hénon map for −1 < β < +1(
xn+1

yn+1

)
= fHα,β

(
xn
yn

)
≡
(

1 + yn − αx2n
+βxn

)
For the parameters .8 < α < 1.05 this map shows the same period doubling phenomenon as the logistic

map this is an example of the universality of period doubling. Show that the Hénon map has real fixed

points in the regime α > − 1
4 (β − 1)2 which satisfy

x∗± =
β − 1

2α
± 1

2α

√
(β − 1)2 + 4α) and y∗± = βx∗±

Prove that x∗− is unstable while x∗+ is stable if and only if α < 3
4 (1− β)2 .

For β = .3 and α ≈ 1 find the stable 2-orbit which corresponds to the fixed points of the second iterate

fHα,β

(
fHα,β

(
x∗

y∗

))
=
(
x∗

y∗

)
.

Draw the bifurcation diagram for the parameters β = .3 and α < 1. Feel free to use the Mathematica DVD

in an ”experimental mathematics” approach to guide your analytic work.

5. Consider the standard map as discussed in class and defined by the equations(
pn+1

qn+1

)
= fSk

(
pn
qn

)
≡
(
pn − k

2π sin(2πqn)

pn+1 qn

)
, with pn and Qn both defined modulo 1 so the p− q ”plane” is actually a torus.Study the fixed points

of this map and show that p∗ = 0, q∗ = 0 is a stable fixed point for k < 4 while q∗ = 1/2 is unstable for

any k > 0.

Show that for p∗ = 1
2 there is a periodic two orbit in which q∗ oscillates from 0 to 1/2 to 1 = 0 (mod 1).

Study the stability of this limit cycle.

Low Dimensional Flows: ODEs

6. Relate the expression for the period of the simple pendulum

T = 4

∫ θmax

0

dθ√
2ω2(cosθ − cosθmax)
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to elliptic integrals. Show that dT
dθmax

> 0 and that θmax → π as T →∞. A good source for information

on elliptic functions is M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, pp. 587

et. seq.

7. For the simple pendulum study the motion along the separatrix and show that the solution that has

θ(t = 0) = 0 is given by

θsx(t) = (4tan−1e+wt)− π .

Comment qualitatively on the “stability” of this separatrix solution.

8. For the damped SHO verify and work out the analytical solutions for the cases (write the solutions in

terms of the nondimensional quantity r = γ
2ω0

)

a) overdamping γ > 2ω0

b) underdamping γ < 2ω0

c) for the degenerate case γ = 2ω0 show, by taking the limit γ → 2ω0 from b), that the solution is a

product of an exponential and a linear function of time:

x(t) = e−ω0t[(ẋ(0) + ω0x(0))t+ x(0)]

9. Draw the phase plane for the quartic anharmonic potential V (x) = − 1
2x

2 + 1
4x

4 which gives rise to the

equation of motion ẍ− x+ x3 = 0.

a) Show that the origin is unstable and that the minima of the potential correspond to stable fixed

points. Are there any separatrices?

b) Add linear damping ẍ+γẋ−x+x3 = 0. Discuss qualitatively, using the phase plane, the resulting

attractors and basins of attraction.

10. Consider a different variant of the quartic anharmonic potential in which both the quartic terms and the

damping can be treated as small parameters. The equation of motion is thus ü+ 2εµu̇+ω2
0u+ εu3 = 0,

with the assumption that |ε| << 1. Using multiple scale analysis, derive to first-order in ε a uniform

expansion for u. [ Hint: Be careful of the phase variation in the zeroth-order solution.]

High-Dimensional Flows: PDEs
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11 In class we showed that the traveling wave solutions to the Korteweg-de Vries equation could be found

by reducing it to an ODE in the co-moving frame ζ ≡ x− vt:

−vuζ + uuζ + uζζζ = 0

We studied the case in which all the constants of integration are zero so that the solution corresponds to

a single soliton us(x, t) = 3vsech2
(√

v
2 (x−vt)

)
. Consider the case when the first constant of integration

is zero but not the second; express this general solution in terms of elliptic functions.

12. Consider the Toda lattice, which as we discussed in class is an example for a completely integrable

discrete system with N degrees of freedom:

Mÿn = a
(
e−b(yn−yn−1) − e−b(yn+1−yn)

)
Derive the continuum limit of the Toda lattice assuming that the lattice spacing a → 0 as well as the

parameter b → 0 while the sound speed c0 – how should it be defined ? – remains constant. Keep the

leading terms beyond the free linear wave equation and discuss the nature of the continuum limit.

13. Consider the linear dispersive wave equation

Φt + cΦx + Φxxx = 0 .

a) Consider a localized lump Φ(x, 0) = e−
x2

2 eik0x as the initial condition. Find its time evolution Φ(x, t)

and examine the phase and group velocities vp ≡ ω
k , vg ≡

dω
dk .

b) Consider a solution with Fourier amplitude A(k) = e−
1
2 (k−k0)

2

. Show how the corresponding solution

in the x-space to the above dispersive wave equation behaves.

14. For the Nonlinear Schrödinger Equation (NLSE) show by direct differentiation that

ΨS(x, t) = Ψo

exp[ i2v1(x− v2t)]
cosh[

√
κ
2Ψo(x− v1t)]

where Ψo =

√
v1(v1 − 2v2)

2κ

is a one-soliton solution.

15. Show that

ΦKK(x, t) = 4 tan−1

(
sinh(γvt)

vcosh(γx)

)
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is a “kink/anti-kink” solution to the sine-Gordon equation and plot its form for t ∈ (−T, 0,+T ) for a

large T � 0. Show LAO that the sine-Gordon equation has a “breather” solution given by

ΦB(x, t) = 4 tan−1

(
ε sin

(
t√

1+ε2

)
cosh

(
εx√
1+ε2

)).

(Hint: observe the fact that the argument is of the form f(t)
g(x) and use this to simplify your differentiation.)

Plot the form of the breather for different phases of oscillations. Can you find a relation between these

two solutions? [Hint: think of complex variables.]

16. Show that the function

u(x, t) = 72

(
3 + 4 cosh(2x− 8t) + cosh(4x− 64t)(

3 cosh(x− 28t) + cosh(3x− 36t)
)2
)
.

is an exact solution to the KdV equation. Show that this solution can be interpreted as a two-soliton

solution by analyzing its asymptotic behavior. In particular, introduce variables ξ = x − 16t and

η = x− 4t, and show that as t→ ±∞ the solution consists entirely of two solitons, centered near ξ and

η = 0. Describe the evolution of the solution from t→ −∞ to t→ +∞.
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