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Introduction: Information Geometry

The statistical manifolds are the object of study in the Information
Geometry. They are families of probability density with its local
coordinates de�ned by the model parameters.

For example, a bivariate Gaussian density can be represented as a
single point on 4-dimensional manifold with coordinates
q = ( µ1;µ2;s1;s2), where as usual these represent the means and the
standard deviations of the density.

The most famous statistical manifolds are the Exponential Families,
among those there are the Normal and Poisson Families and also the
Mixture Family.
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Introduction: Statistical Manifolds

Another important family, specially in the study of the neuronal
networks, is the Family of Normal Mixture Distributions .

Let z be a discrete random variable, taking values on f 1; :::kg with
probabilities pi = Pf z= ig, i = 1; :::k.

Let x be a real random variable, depending on z and subject to the
normal distribution N(µi ;s2

i ) when z= i.

The joint distribution of (x;z) is written as

p(x;z) = å k
i= 0di(z)pi

1p
2ps i

expf¡ (x¡ µi )2

2s2
i

g (1)
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Introduction: Exponential Family

Usually z is not observed and the marginal distribution of x is

p(x) = å k
i= 0

pip
2ps i

expf¡ (x¡ µi )2

2s2
i

g (2)

In the �rst case, we can show that the model is an Exponential Fa mily
while, without z, it is not an Exponential Family.

From Information Geometry we also know that Fisher information
matrix induces a riemannian metric on the statistical manifold, called
the Fisher-Rao metric with metric tensor:

gi j (q) =
R

p(x=q) ¶
¶qi logp(x=q) ¶

¶qj logp(x=q)dx (3)
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Fisher-Rao Metric

Differential Geometry proves that all the analysis is intrinsic, that is on
the manifold without considering how it embeds in an euclidean space.
Then, given two points on the Statistical Manifold, there exists only one
geodesic with connects them minimizing the distance, that is Fisher
information.

Information Geometry endows a Statistical Manifold also with a
geometrical structure, induced by two dually coupled af�ne
connectionshaving two types of geodesics (e-geodesics and
m-geodesics) and consequently two types of projections (e-projections
and m-projections).
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Neural networks

In particular, a dually �at manifold has a deep differential geometrical
structure.

For example, an Exponential Family has two dually �at connect ions with
respect to the Fisher metric, therefore the Riemann-Christoffel
curvatures vanish with respect to these connections but the Levi-Civita
connection has non-zero curvature!

These properties work very well in the neural case, where we have an
information network trained by various input signals and
corresponding output behaviors.
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First Application: Regime-changes

Phenomena of regime-changeplay an important role in a wide range of
disciplines from Physics, to Biology, Economics and even to Sociology.

There are also phenomena which exhibit random switches between a
stable or normal regime and a turbulent or excited regime, in which
the occurrence of spikes of very large magnitude can be observed.

As examples, there are the dynamics of electricity pricesor of the
total seismic activity in a region.
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Electricity prices of APX market

Period: 02:01:2001¡ 30:09:2004
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Total seismic activity of California

Period: 01:01:1960¡ 31:12:1985
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Regime-switching models

To describe all those situations Hamilton proposed the
regime-switching models.

The assumption is that some unpredictable forces produce the
switches, therefore the motion is described by a larger model where a
hidden random variable changes according to a probability distribution.

The simplest hypotheses is that the switching mechanism between the
states is governed by an unobservable Markov process, that is the
probability of a change in regime depends on the past only through the
value of the most recent regime.
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Price dynamics

In particular we consider the stochastic two-regimes model of price
behavior with time-varying parameters, due to Hamilton.

If yt is the logarithm of price, the model for yt depends on an
explanatory variable xt .

For the regime St = i, with i = 1;2, the form of the dynamics is the
following:

yt = µit + eit = a i + f iyt¡ 1 + gixt + eit (4)

where a i , f i , and gi are unknown and eit is an unobservable residual
that is N(0;s2

i ).
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Price dynamics

Assuming markovian transitions, the model is mean reversing and the
conditional mean of yt

E[yt j xt ;yt¡ 1;St = i] = µit (5)

varies in time.
We denote:

F t = [ y1;y2; :::;yt¡ 1;x1;x2; :::;xt ] the information available to make a
one-step ahead forecast of yt , in both regimes.

r it jt¡ 1 = Pr(St = i j F t¡ 1), i = 1;2, the probability of being in regime i
given the information in the previous period.
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Price dynamics

The likelihood value for an observation of yt , in a given regime, can be
written:

fit = f (yt j St = i;yt¡ 1;xt ;qi) (6)

where qi = f a i ; f i ;gi ;s ig, for i = 1;2. It is possible to assume for these
functions the hypothesis of normality.

The conditional likelihood value for an observation can be written as
a weighted average of the likelihoods for the two regimes as follows:

g(yt j yt¡ 1;xt ;wt ; f i) = f1tr 1tjt¡ 1 + f2tr 2tjt¡ 1 (7)

where f i = f qi ;ci ;dig, for i = 1;2.
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Price dynamics

If no hidden variable is assumed, we deduce that the set of all
conditional probability distributions is not an Exponential Family.

Otherwise, given the information at the previous time F t¡ 1, we can
regard (St j F t¡ 1) as a hidden discrete random variable, taking values
i = 1;2 with conditioned probabilities r it jt¡ 1. In this hypothesis the joint
probability distribution is

p(yt j yt¡ 1;St j F t¡ 1) = å i di(St j F t¡ 1)r it jt¡ 1 fit (8)

where di denotes the Dirac function for the value i. It is a Normal Mixture

with hidden variable then an Exponential Family.
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(EM)-algorithm and (em)-algorithm

When F t¡ 1 is not �xed, we obtain a submanifold of dimension 6 in the
product space St¡ 1 £ St .

In this case, it is possible to prove that the (EM)-algorithm , applied by
statisticians to estimate the parameters of a model, is equivalent to the
(em)-algorithm de�ned in Information Geometry by the e-projections
and the m-projections.

Possible applications: Inspired by this result, we can research to
construct new statistical tests to detect the regime-switching in real
phenomena, like price behavior, using geometric quantities as the
dimension or the curvature of the statistical manifold of the parameters.
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Second Application: Patterns

One of the most important properties of Complex Systems is the
forming of patterns: a band of �sh in the sea, a �ight of birds in the sky,
the dunes in the desert are only few examples.

These patterns are not �xed in time but they evolve with the dyn amics
of the Complex Systems and vary according to its level of
self-organization.

The goal is modeling them statistically, using Information Geometry
tools, describing step by step their changes. In particular we wish to
discover an index which is capable to understand the trend in the
self-organization phenomenon and capture eventual crisis signals.
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An example of Complex System

The macula is the central part of the retina in the eye, where the
distinct vision occurs.

A frequent pathology, due to the degrading of that Complex System, is
the irreversible reduction of the vision in the people more of 65 years
old, which is called macular degeneration due to the age.

Ophthalmologists distinguish the evolution of the disease in two
phases: an initial form, called dry, and a terminal form, which can be
new-vascular or for atrophy.

The �rst one is characterized by the presence of some retina' s
damages, such as drusen, and areas of change of the pigmentation of
the epithelium. In this phase people continues to have a discreet level
of vision.
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An example of Complex System

On the contrary, the second phase produces a serious loss of vision's
capacity and it is characterized by the appearance of a central scotoma
produced by the development of anomalous new-vessels near the
macula. The atrophy is characterized by loss of the retina's normal
stratus.

The diagnosis of macular degeneration is made observing the ocular
fundus by ophthalmoscopy and using recent imaging techniques, such
as �uor-angiography. Each of such techniques consents the vi ew of the
typical damages, their classi�cation, supervision in time and this is very
useful to value the ef�cacy of the therapies.
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Normal case

APX EEX
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First phase: Blots in the image

APX EEX
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Second phase: new-forms join the initial pattern

APX EEX
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Landmarks

Data from a pattern are often realized as a set of points.

Many statistical methods allow us to extract some points, which are
representative for the shape and are called landmarks. We can mean
these landmarks as the centers of the surrounding points.

Peter and Rangarajan identify k landmarks of the same shape with the
mean points of a k-component Gaussian mixture model(GMM). That
is, if we consider planar shapes, the landmark positions are the means
for:

p(x=Q) = 1
2ps2K å K

i= 1expf¡ kx¡ µik2

2s2 g (9)

where Q is the set of all the landmarks, µi = ( µi
1;µ

i
2) and x = ( x1;x2).
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Landmarks

In the absence of any a priori knowledge, it is acceptable to put in the
model equal weight 1

K to every landmark.

The variance s captures uncertainties that arise in landmark placement
and/or the natural variability across a population of shapes. Peter and
Rangarajan consider s as a free parameter, which is isotropic across all
components. Therefore they only use the meansof a (GMM) as the
manifold coordinates.

On the contrary, we consider variancesas further coordinates for the
landmarks of a complex shape, compatibly with the Information
Geometry theory. It is clear that a landmark with a big variance informs
us that it is not much representative of its surrounding points.
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Landmarks

On the other side, we also remove the isotropic hypothesis. Indeed, for
example, when we have a photograph unfocused on a part of it, we can
not state that the information we deduce is uniform.

The model of Peter and Rangarajan, even if numerically more simple,
induced a loss of information in the Fisher sense. But, in some cases, it
is reasonable to use that, in particular when the change of the shape is
due to external forces. Indeed the Authors refer to "deformation of the
external space" and unify representation and deformation.

On the contrary, we are interested in the natural evolution of the shape
produced by internal forces to the system. This is very important, for
example in medicine, indeed often the dimmed or stained imagine is
the warning of some problems for the involved organ, as we saw in the
macular degeneration.
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The model

Therefore we consider the following model:

p(x=Q) = 1
2pK å K

i= 1
1

ks ik2 expf¡ kx¡ µik2

2ks ik2 g (10)

where Q = f qi = ( µi ;s i) : i = 1; :::;Kg with s i = ( s i
1;s

i
2) and the other

symbols are the same of the previous case.

We deduce that, if two shapes are represented by mixture models, the
parameters of which map points on the statistical manifold, it is possible
to use Fisher-Rao metric to construct a geodesic between them which
will inform us on the intermediate shapes(landmarks and their
variances). That intrinsic path will drive the reconstruction of the real
intermediate shapes in the external space.
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The model

The intrinsic evolution of the landmarks and their variances requires the
parametrization of Q by time:

Q(t) = f qi(t) = ( µi(t);s i(t))g

Possible applications: We note that s i(t) analysis gives us information
regarding the dispersion of the real points of the shape around their
means µi(t), when t is varying. If s i(t) increases in time, we lose
detailed resemblance to the original shape and, when it is a complex
pattern, we can deduce a loss of the self-organizationas connecting
phenomenon of the system. Numerical simulations prove that, in this
case, the image shows blots, as a photocopy from a damaged machine.
Besides, the study of the instantaneous speed of qi(t), allows us a
forecast, in the short time, of the evolution of the pattern and of the
eventual tendency to break up of the system.
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